Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution

Highlights

- Multiple lineage trajectories were mapped from olfactory stem cells
- Sustentacular cells can arise by direct fate conversion without cell division
- Multipotency is generated through unipotent fate decisions of single stem cells
- Canonical Wnt signaling activates stem cells toward the neuronal fate

In Brief

The olfactory epithelium is a site of active neurogenesis. Fletcher et al. combine single-cell transcriptomics and clonal lineage analysis to trace cell fates from the multipotent olfactory stem cell and identify multiple mechanisms controlling cell fate, including direct conversion of quiescent stem cells into support cells without cell division.
Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution

Russell B. Fletcher,1,6 Diya Das,1,9 Levi Gadye,2 Kelly N. Street,3,8 Ariane Baudhuin,1 Alon Wagner,4,8 Michael B. Cole,5,8 Quetzal Flores,1 Yoon Gi Choi,6 Nir Yosef,4,8 Elizabeth Purdom,7,8 Sandrine Dudoit,3,7,8 Davide Risso,3,10 and John Ngai1,2,6,11,*

1Department of Molecular and Cell Biology
2Helen Wills Neuroscience Institute
3Division of Biostatistics
4Department of Electrical Engineering and Computer Science
5Department of Physics
6QB3 Functional Genomics Laboratory
7Department of Statistics
8Center for Computational Biology
University of California, Berkeley, CA 94720, USA
9These authors contributed equally
10Present address: Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY 10065, USA
11Lead Contact
*Correspondence: jngai@berkeley.edu
http://dx.doi.org/10.1016/j.stem.2017.04.003

SUMMARY

A detailed understanding of the paths that stem cells traverse to generate mature progeny is vital for elucidating the mechanisms governing cell fate decisions and tissue homeostasis. Adult stem cells maintain and regenerate multiple mature cell lineages in the olfactory epithelium. Here we integrate single-cell RNA sequencing and robust statistical analyses with in vivo lineage tracing to define a detailed map of the postnatal olfactory epithelium, revealing cell fate potentials and branchpoints in olfactory stem cell lineage trajectories. Olfactory stem cells produce support cells via direct fate conversion in the absence of cell division, and their multipotency at the population level reflects collective unipotent cell fate decisions by single stem cells. We further demonstrate that Wnt signaling regulates stem cell fate by promoting neuronal fate choices. This integrated approach reveals the mechanisms guiding olfactory lineage trajectories and provides a model for deconstructing similar hierarchies in other stem cell niches.

INTRODUCTION

A fundamental challenge in stem cell biology is to define both the cell fate potential of a given stem cell and where cell fates are specified along a developmental trajectory. Moreover, detailed lineage trajectory maps are necessary for identifying the regulatory networks that govern the cell fate transitions underlying tissue maintenance and regeneration and are essential for designing strategies to manipulate cells for therapeutic applications. Lineage tracing—a technique for permanently labeling the descendants of a targeted cell—has long been established as a powerful tool for elucidating the cell fate potential of progenitor cells (Dymecki and Tomasiewicz, 1998; Le Douarin and Teillet, 1974; Price et al., 1987; Weisblat et al., 1978; Zinyk et al., 1998). However, this approach alone cannot readily identify all intermediate stages in a lineage or pinpoint when, in a branching lineage, multiple cell fates arise.

Whole-transcriptome profiling of single cells by RNA sequencing (single-cell RNA-seq) has recently emerged as a powerful method for discriminating the heterogeneity of cell types and cell states in a complex population (Wagner et al., 2016). New statistical approaches have further enabled the ordering of cells along developmental lineages based on gradual changes in gene expression detected at the single-cell level (Trapnell et al., 2014). However, current approaches struggle to overcome the challenge of identifying where lineages diverge in more complex branching trajectories of multipotent progenitors, a problem that is only beginning to be addressed (Setty et al., 2016). Importantly, even the most sophisticated analysis of single-cell RNA-seq data can only provide predictions that require independent experimental validation.

The olfactory epithelium maintains a steady-state population of mature olfactory sensory neurons via continual neurogenesis in the postnatal animal (Graziadei and Graziadei, 1979b; Mackay-Sim and Kittel, 1991). Olfactory neurogenesis is normally sustained through differentiation of globose basal cells (GBCs), which are the actively proliferating neurogenic progenitor cells in the niche (Caggiano et al., 1994; Graziadei and Graziadei, 1979b; Schwob et al., 1994). Upon targeted destruction of the sensory neurons or more severe injury to the entire tissue, the olfactory epithelium can regenerate (Graziadei and Graziadei, 1979a). Following such injury, horizontal basal cells (HBCs)—the normally quiescent, reserve stem cells of the niche—become activated to differentiate and reconstitute all major cell types in the epithelium (Iwai et al., 2008; Leung et al., 2007; Figure 1A).
With its relative simplicity and experimental accessibility, the postnatal olfactory epithelium provides an attractive system for studying the activation and specification events that occur during the differentiation of multiple cell lineages from an adult stem cell. A number of questions relevant to other adult stem cell niches can also be addressed. For example, although lineage tracing suggests that cells arising from HBCs transition through proliferative GBC progenitors to generate olfactory sensory neurons (Leung et al., 2007), it remains unclear whether the epithelium’s other cell types arise via a common GBC intermediate. Similarly, characterizing the transitions in gene expression that occur throughout a developing lineage is a prerequisite for disentangling the gene regulatory networks that underlie cell fate decisions.

In the present study, we combined a statistical approach for making branching lineage assignments from single-cell RNA-seq data with in vivo lineage tracing to map the developmental trajectories of the multiple cell lineages arising from the olfactory epithelium’s HBC stem cell. The first major bifurcation in the HBC lineage trajectory occurs prior to cell division, producing either sustentacular (support) cells or GBCs. The GBC lineage, in turn, branches to give rise to olfactory sensory neurons, microvillous cells, and cells of the Bowman’s gland. Olfactory neurogenesis involves an expansion of the progenitor pool via proliferative
GBCs, but sustentacular cells can instead arise via direct fate conversion of quiescent HBCs, a process that does not require cell division. Moreover, the multipotency of HBCs as a population reflects independent unipotent cell fate decisions made at the single-cell level. Finally, we identified and validated canonical Wnt signaling as a regulator that drives HBCs from quiescence toward neuronal differentiation. Our combined approach serves more generally as a model for illuminating and deconstructing branching lineages that arise from multipotent stem cells.

RESULTS

Experimental Strategy for Analyzing Olfactory Stem Cell Trajectories by Single-Cell RNA-Seq

We applied single-cell RNA-seq to identify the cell state transitions during differentiation of olfactory HBC stem cells into proliferating progenitors and mature cell types. HBCs and their descendents were obtained using two complementary approaches (Figure 1). In the first, we used inducible Cre-lox lineage tracing to label HBCs and their progeny. To obtain resting HBCs (controls), we harvested cell samples 72 or 96 hr following tamoxifen-induced Cre activation in 3-week-old mice (Figure 1C). To obtain differentiating cells descended from HBCs, we used conditional knockout of Trp63 in HBCs to “release” HBCs from their quiescent state (Figures 1B and 1C; Fletcher et al., 2011). In the second approach, using a Sox2EGFP knockin reporter gene (Arnold et al., 2011), we purified Sox2-EGFP-positive, ICAM1-negative, SCARB1/F3-negative cells by fluorescence-activated cell sorting (FACS) to obtain a population of cells enriched for GBCs, later neuronal intermediates, and microvillus cells over sustentacular cells.

Single-cell RNA-seq was carried out on FACS-purified cells using the Fluidigm C1 microfluidics cell capture platform followed by Illumina sequencing (see STAR Methods for these and associated statistical methods). Single-cell data from yellow fluorescent protein (YFP) lineage tracing experiments and Sox2-EGFP experiments were combined into one dataset, a strategy designed to maximize the representation of cell states along the developmental trajectories. Sequencing data from a total of 687 cells (542 from YFP lineage-traced cells and 145 from Sox2-EGFP-expressing cells) remained after filtering based on various quality control metrics (Figure 1E).

Clustering and Assignment of Differentiating Cells to Branching Cell Lineages

Resampling-based ensemble clustering (RSEC) was applied to the first 50 principal components of the expression matrix to generate stable and tight clusters, yielding a final repertoire of 13 clusters (Figures S1 and S2; STAR Methods). To visualize cellular heterogeneity, we projected the data onto two dimensions via t-distributed stochastic neighbor embedding (t-SNE; van der Maaten and Hinton, 2008), which confirms that our clustering procedure led to well defined, distinct groups (Figure 2A). Preliminary cell type assignments were made based on the expression of known and/or validated marker genes for HBCs, GBCs, immediate neuronal precursors (INP1–3), immature and mature olfactory sensory neurons (iOSNs and mOSNs), immature and mature sustentacular cells (iSus and mSus), and microvillus cells (MV1 and MV2) (Figure 2B; Figure S2; see STAR Methods for details). Interestingly, two clusters (ΔHBC1 and ΔHBC2) contain cells in which the canonical HBC stem cell markers Trp63, Krt5, and Krt14 appear to be variably downregulated from cell to cell (Figure S2), suggesting the existence of at least one transition state in which HBCs first begin to differentiate.

Mapping transcriptional changes as cells transition from stem cells to specialized cell types is essential for understanding the mechanisms regulating cell and tissue differentiation. In differentiating lineages, cells are thought to undergo gradual transcriptional changes, where the relationship between states can be represented as a continuous lineage dependent on an underlying spatial or temporal variable. This representation, often referred to as pseudotemporal ordering (Trapnell et al., 2014), can provide a basis for understanding how and when cell fate decisions are made. The task of assigning and ordering cells in a lineage in the olfactory HBC stem cell niche is complicated by the requirement to accommodate multiple branching cell fate trajectories that give rise to the multiple cell types. To address this problem, we applied Slingshot, a statistical framework for inferring branching lineage assignments and developmental distances (STAR Methods). Three distinct trajectories were identified, each starting from the resting HBC stage and leading to the three defined mature cell types (Figures 2D and 2E). All three trajectories were predicted to pass together through the two transitional HBC stages, at which point the first branching in the lineage occurs. One path leads to immature and then mature sustentacular cells (magenta). The other path connects transitional HBCs to GBCs, from which the remaining two lineages diverge: one to form microvillus cells (blue) and one to form olfactory sensory neurons (orange). The latter trajectory passes through GBCs, three discrete stages of immediate neuronal precursors (INP1–3), and immature olfactory sensory neurons before concluding in mature olfactory sensory neurons.

Developmental Ordering of Cells in the Neuronal and Sustentacular Cell Lineages

We next sought to order all cells and analyze transitions in their transcriptional states as they differentiate to become sustentacular cells and olfactory sensory neurons. Slingshot assigned developmental positions of cells along the lineage trajectories (analogous to the concept of pseudotime; Trapnell et al., 2014) by orthogonal projection of each cell’s principal coordinates onto its respective curve (displayed as one dimensional plots in Figures 3A and 3C). From this analysis, it is evident that the transition from ΔHBC2 to GBCs entails a relatively large jump in gene expression space. Similarly, there is a larger gap between the INP1 and INP2 stages compared with the other transitions following the GBC stage in this lineage. Such jumps in developmental distance may represent major transcriptional changes in which distinct networks of genes are turned on or off.

To gain insight into the coordinated patterns of gene expression that underlie the cell fate transitions in the neuronal and sustentacular cell lineages, we identified and clustered the most differentially expressed genes within each lineage (Figure S3; Table S1; STAR Methods). The average scaled expression profiles for the gene clusters in the neuronal and sustentacular cell lineages are displayed using heatmaps in Figures 3B and 3D, presented in developmental order according to the predictions.
Figure 2. Statistical Analysis of Single-Cell RNA-Seq Data Predicts Distinct Cell States and Branchpoints in the Olfactory Stem Cell Trajectory

(A and B) t-SNE plot (perplexity = 10) based on the 500 most variable genes showing the separation of the cells into discrete groups congruent with the clustering. In (A), each circle represents a cell. Cluster medoids are displayed as larger circles with initial assignments of cluster identity based on the expression of a small number of marker genes (B).

(C) t-SNEs as in (A) and (B) and colored by experimental condition. Differentiation is asynchronous, but cells from the later lineage tracing time points and the Sox2-EGFP+ cells contribute to more differentiated cell types.
made by Slingshot. This comparison highlights the dramatic difference in coordinated gene expression through developmental progression in the two lineages. In the neuronal lineage, many modules of genes are transiently turned on and off, patterns that contrast with the more gradual wave-like changes in gene expression exhibited by the sustentacular lineage. Moreover, there is a longer distance traversed in the neuronal lineage both in terms of the number of distinct cell states and the number of genes showing significant changes at each transition (Figure S3; Table S2).

Consistent with recent studies (Hanchate et al., 2015; Saraiva et al., 2015; Scholz et al., 2016; Tan et al., 2015), our analysis further reveals that low-level expression of multiple odorant receptor (OR) genes per cell commences at the INP2/3 stage, culminating with high-level expression of a single OR per cell in immature olfactory sensory neurons (Figure S4).

Proliferation Is Restricted to the GBC and Neuronal Lineage

Numerous studies have demonstrated that GBCs represent the major proliferative progenitor cell in the uninjured olfactory epithelium (Caggiano et al., 1994; Graziadei and Graziadei, 1979b; Schwob et al., 1994). We therefore examined the expression of cell cycle-associated genes (Kowalczyk et al., 2015; Whitfield et al., 2002; Figure S3) to determine whether and where expansion occurs in the neuronal and sustentacular cell lineages. As judged by expression of cell proliferation markers, GBCs and INP1 cells comprise the two actively proliferating progenitor cell types in the neuronal lineage (Figure 3B; Figure S3). In
striking contrast, cells progress through the sustentacular cell lineage without a concerted upregulation of cell proliferation markers (Figure 3D; Figure S3). Thus, HBCs appear to transdifferentiate into sustentacular cells through a process that does not require cell division.

Lineage Tracing In Vivo Validates Predicted Branchpoints in the Olfactory Stem Cell Trajectory

A number of testable predictions can be made from the in silico branching lineage assignments and developmental ordering of differentiating olfactory cells shown in Figures 2 and 3. First, the initial branching of the sustentacular cell and neuronal lineages at the transitional HBC stage and in the absence of active cell proliferation suggests that, when stimulated to differentiate, each HBC adopts a unique cell fate; i.e., GBC versus sustentacular cell. In this scenario, the multipotency of the population of HBCs is driven by independent unipotent differentiation events that occur at the single-cell level. To test this prediction, we performed clonal lineage tracing in vivo. HBCs were labeled and stimulated to differentiate by induction of Cre recombinase activity with doses of tamoxifen adjusted to elicit sparse activation of HBCs in Krt5-CreER; Trp63lox/lox; Rosa26Confetti mice. Animals were sacrificed 7 and 14 days after tamoxifen induction, and the expression of fluorescent protein reporters encoded by the Rosa26Confetti locus was assessed using an anti-GFP antibody. Representative examples of labeled clones are shown in Figures 4A–4D. Consistent with Slingshot’s prediction that individual HBCs initially give rise to single lineages, at 14 days of differentiation, 90 of 99 clones contained cells representing either the combined neuronal/microvillous cell lineage (80, comprising 13 GBC-containing, 56 neuron only, 1 neuron + Bowman’s gland, 9 neuron + microvillous cell only, and 1 microvillous cell only) or sustentacular cells (10) but not cells from both lineages (Figure 4E). Clones containing a mixture of sustentacular cells and neurons comprise the remaining nine clones. Only one labeled Bowman’s gland was detected among the 99 clones scored for this analysis; the scarcity of lineage-traced Bowman’s glands mirrors their apparent absence in our analysis of the single-cell RNA-seq data, suggesting that these cells arise only rarely from HBCs in the normal, uninjured epithelium. Similar results were obtained from clones scored at 7 days of differentiation (Figure S5).

A second hypothesis based on our analysis with Slingshot is that sustentacular cells are formed through direct fate conversion from HBCs without cell division, whereas the neuronal lineage expands via proliferation of GBC and INP1 progenitors. Indeed, using our sparse lineage tracing strategy, we observed a marked disparity in the numbers of neurons and sustentacular cells per clone. At 14 days of differentiation, neuron-containing clones contained 13.5 ± 1.0 neurons (mean ± SEM) (Figure 4F), whereas sustentacular cells are present at one to two cells per clone (1.3 ± 0.1 cells; Figure 4G). The average number of neurons per clone increases from 7 days (8.8 ± 1.0 cells/clone) to 14 days, whereas the number of sustentacular cells per clone remains essentially unchanged over this interval (1.2 ± 0.1 cells/clone at 7 days; compare Figures 4F and 4G with Figure S5). Moreover, most sustentacular cell-containing clones contain only a single sustentacular cell, confirming the assignment of the first major branchpoint in the HBC-derived lineage to an early, non-proliferative transitional HBC stage. Complementing the predicted lineage trajectories, these observations provide strong evidence that HBCs differentiate directly into sustentacular cells in the absence of cell division. Alternatively, the presence of a single cell per clone may reflect proliferation of a sustentacular cell progenitor followed by apoptotic cell death, leaving, on average, a single mature daughter cell per differentiating stem cell. However, the very low frequency of activated caspase-3 expression in YFP lineage-traced cells (0%–0.6%; Figure 4I; Figure S5) is inconsistent with apoptosis as a significant contributor in the differentiation of mature cell types from HBC stem cells (Fletcher et al., 2011). The presence of two sustentacular cells in a minority fraction of clones may reflect the proliferative capacity of the sustentacular cells themselves (Weiler and Farbman, 1998) and/or the occasional proliferation of resting HBCs (Fletcher et al., 2011) or transitional HBCs. Consistent with these possibilities, rare proliferating cells can be observed at both the HBC and late sustentacular cell stages (Figure 3D).

The third major prediction of our branching lineage assignment is that microvillous cells and olfactory sensory neurons arise from a common sub-lineage that branches at the GBC stage to give rise to these two cell types. In support of this prediction, nine of ten clones containing microvillous cells also contain neurons (Figure 4E). Microvillous cells are rare in comparison with olfactory sensory neurons (Hansen and Finger, 2008; Jia et al., 2013; Ogura et al., 2011; Yamaguchi et al., 2014); this difference is reflected by the small number of microvillous cell-containing clones detected (12% of neuron-containing clones) as well as the low number of microvillous cells present in any given microvillous-containing clone (1.2 ± 0.1; Figure 4H). These clonal lineage tracing results are complemented by a similar, non-clonal lineage tracing analysis using a knockin Ascl1-CreER driver (Kim et al., 2011), which recapitulates Ascl1’s expression in postnatal GBCs (Figure S4; Manglapus et al., 2004). Cells lineage-traced 3 weeks after tamoxifen activation of the Ascl1-CreER driver comprise mainly neurons (98% of ~1,000 cells scored over 3 animals) (Figures 4J and 4L), with microvillous cells representing ~1% of the labeled cells (Figures 4K and 4L). In addition, cells of the Bowman’s gland—identified by their expression of Sox9 and assembly into ducts contiguous with submucosal acini—were also lineage-traced by the Ascl1-CreER driver (Figure S5), suggesting that cells of the Bowman’s gland arise from GBC progenitors (see Goss et al., 2015). We failed to detect any sustentacular cells labeled by the Ascl1-CreER driver, supporting the prediction that a second branching of the lineage occurs at the GBC stage to give rise to numerous olfactory sensory neurons and occasional microvillous cells but not sustentacular cells.

Coordinated Transcription Factor Networks Associated with Lineage Progression

To gain a more comprehensive view of the combination of factors that drive HBCs to form the two major OE lineages, we identified the differentially expressed transcription factors in the neuronal and sustentacular cell lineages and displayed their expression profiles by developmental order in their respective lineages (Figures S5A and S5B; Table S3). The dynamic, step-like changes in gene expression in the neuronal lineage (Figure 3; Figure S3) are also observed in the expression of transcription
Figure 4. Clonal Lineage Tracing In Vivo Validates Branching Lineage Assignment Predictions

(A–D) Example images of clones from Krt5-CreER; Trp63^{lox/lox}; Rosa26^{Confetti} transgenic animals analyzed 14 days following tamoxifen induction of the CreER driver: neuronal only (A), neuronal and sustentacular (arrow, B), sustentacular cell only (C), and neuronal and microvillous cell (arrowhead, D).

(E) Most clones represent unipotent differentiation events, supporting the prediction that the lineages bifurcate early. The majority of clones contain only cells in the GBC/neuronal lineage, and just over half of all sustentacular cell-containing clones are composed of only sustentacular cells. Almost all microvillous cells are found together with neurons. One of 99 clones contained a labeled Bowman’s gland together with neurons.

(F–H) Clone size distribution. The number of neurons in neuron-containing clones (F) is larger, validating that the neuronal lineage contains amplification stages, whereas the sustentacular cells are usually present as single cells (G). Microvillous cells are usually found as singlets and are typically found in clones together with neurons (H).

(I) Percentage of Krt5-CreER; Trp63^{lox/lox}; Rosa26^{EYFP} lineage-traced cells co-labeled with activated caspase-3 at 24, 48, and 96 hr and 7 days following tamoxifen injection. The low frequency of apoptosis (0%–0.6%) in the HBC lineage is inconsistent with cell death as a mechanism to generate clones containing single cells.

(J–L) Ascl1-CreER; Rosa26^{EYFP} lineage tracing 21 days following tamoxifen induction shows that, although Ascl1-positive GBCs usually form neurons (~98%) (J), they occasionally form microvillous cells (K). The percentage (mean ± SD) of each cell type formed from lineage-traced cells (1,072 cells from three animals) is summarized in (L).

Scale bars, 25 μm. See also Figure S5.
Fewer transcription factors show dynamic expression in the sustentacular lineage compared with the neuronal lineage (Figures 5A and 5B; Figure S6).

We next constructed a co-expression network by correlating differentially expressed transcription factor genes and connecting those with high correlation (Figures 5C and 5D; Figure S6).

The neuronal lineage is composed of three main subnetworks of transcription factors whose expression is enriched either in resting and transitional HBCs, GBCs, and INP1 cells or later-stage neuronal precursors and neurons (Figures 5C and 5E). In contrast, only one network of transcription factors in the sustentacular cell lineage is identified using the same criteria.

Figure 5. Coordinated Transcription Factor Networks Associated with Lineage Progression
(A and B) Heatmaps of the top differentially expressed (DE) genes for the neuronal (A) and sustentacular cell (B) lineages.
(C and D) Connectivity graphs of the most correlated DE transcription factors for the neuronal (C) and sustentacular cell (D) lineages, colored by the cluster in which expression is highest; the size of each node indicates magnitude of expression.
(E) Connectivity graph for the neuronal lineage colored by rank across the clusters within the lineage. For each transcription factor, we computed the average expression in each cluster and color-coded the corresponding node to indicate the cluster with the highest average expression.
See also Figure S6 and Table S3.
Figure 5D), consistent with our observation that the sustentacular cells are closely related to the HBCs at the transcriptional level. Interestingly, the AP1 transcription factors (Karin et al., 1997)—previously demonstrated to regulate keratinocyte differentiation (Eckert et al., 2013)—are enriched in the resting and transitional HBCs (Figure 5; Table S3), suggesting that similar transcriptional networks may be used to control differentiation in these two divergent epithelial stem cell niches.

Activation of Canonical Wnt Signaling Is Necessary and Sufficient to Drive HBC Differentiation into Olfactory Sensory Neurons

Having identified discrete stages in the differentiating olfactory lineages, we next sought to identify specific genes and signaling networks that might govern critical cell state transitions that occur as HBCs differentiate. We applied gene set enrichment analysis (GSEA) with rotation tests (Ritchie et al., 2015) to identify pathways that are enriched in cell clusters based on single-cell RNA-seq data (Figure S6; Table S4). Among the top hits found in resting HBCs is the canonical Wnt signaling pathway (Figure 6A; Figure S6), which has been shown to regulate stem cell dynamics in other niches (Clevers et al., 2014). Two repressors of canonical Wnt signaling, Dkk3 and Sfrp1 (Kawano and Kypta, 2003), are enriched in resting HBCs and subsequently downregulated upon HBC differentiation (Figure S6), suggesting that autocrine or paracrine inhibition of Wnt signaling may promote HBC quiescence. To test this hypothesis, we activated Wnt signaling in resting HBCs using the Krt5-CreER driver to conditionally express an activated form of β-catenin (Ctnnb1lox(ex3) allele) (Harada et al., 1999). Compared with controls (Figure 6B), activation from one copy of the β-cateninlox(ex3) allele resulted in the appearance of dysmorphic, globose-like basal cells reminiscent of activated HBCs (Fletcher et al., 2011) as well as occasional differentiated neurons (Figure 6C). Strikingly, a genetic interaction was observed between Trp63 and Wnt signaling in a sensitized trans-heterozygous β-cateninlox(ex3)/+; Trp63lox/+ background in which HBCs differentiated in a manner similar to conditional ablation of Trp63 alone (compare Figure 6D with Figure 6E). In this case, however, HBCs predominantly formed neurons and proliferative GBC progenitors and very rarely produced sustentacular or microvillous cells (Figures 6D and 6J).
Furthermore, neurons derived from these Wnt-activated HBCs failed to fully migrate apically, consistent with the established role of Wnt signaling in stimulating GBCs to differentiate while impeding subsequent neuronal maturation (Chen et al., 2014; Wang et al., 2011).

To test whether Wnt signaling is necessary for activation of HBC differentiation, we conditionally ablated a floxed β-catenin allele (Ctnnb1lox/lox) in HBCs using the Krt5-CreER driver. Resting HBCs appeared normal in the absence of β-catenin (Figure 6F). Although knockout of Trp63 alone resulted in HBC differentiation mostly into neurons (Figure 6G), in the Trp63 and β-catenin double knockout, HBCs produce fewer differentiated cells and had a diminished capacity to produce neurons (Figures 6H, 6I, and 6K; Figure S6); most of the differentiated cells were sustentacular cells or non-neuronal SOX2+ cells. Taken together, these data indicate that activation of canonical Wnt signaling is both necessary and sufficient to drive the transition of HBCs from a resting to an activated neurogenic state in the uninjured epithelium.

DISCUSSION

In this study, we developed an integrated approach using in silico analysis of single-cell RNA-seq data and in vivo lineage tracing to illuminate the cell fate potentials of individual olfactory stem cells and the locations of branchpoints in the olfactory lineage trajectory. Our combined analysis identified the trajectories that produce three out of the four major cell types in the olfactory epithelium: the olfactory sensory neurons, microvillous cells, and sustentacular cells. Lineage tracing alone further revealed the origins of cells of the Bowman’s gland. One sub-lineage gives rise to the niche’s proliferative GBCs, which, in turn, generate olfactory sensory neurons, microvillous cells, and cells of the Bowman’s gland. The other sub-lineage generates sustentacular cells through a differentiation process characterized by fewer and more gradual transitions that occur in the absence of cell division. The differences in gene expression and cell state transitions in the neuronal and sustentacular cell lineages are likely the result of similarly divergent patterns of coordinated transcription factor expression in the respective lineages. It is possible that additional and more subtle transitions in cell states exist but were not resolved by the present analysis, which was based on sequencing less than 1,000 cells. Nonetheless, our approach enabled an analysis of the olfactory HBC stem cell’s fate potential and the location of branchpoints in the lineage at a level of detail not possible by either in vivo lineage tracing or single-cell RNA-seq alone and serves as a model for elucidating complex lineage trajectories in other stem cell niches.

Transitional HBCs Represent a Discrete Cell State in Which Neuronal versus Sustentacular Cell Fates Are Specified

Our analysis of single-cell RNA-seq data allowed for the identification of previously uncharacterized transitional or activated states that HBCs first enter upon differentiation, during which one of two cell fates is adopted. This first transition — comprising at least two states (ΔHBC1 and ΔHBC2) — is manifested by a subtle shift in gene expression, underscoring the power of single-cell RNA-seq to detect cell state changes that would otherwise elude detection by more conventional approaches based on the expression of a small number of known marker genes. Interestingly, the downregulation of the transcription factor Trp63 is both necessary (Schnittke et al., 2015) and sufficient (Fletcher et al., 2011) to stimulate HBCs to differentiate. However, transitional HBCs exhibit highly variable expression of Trp63 and other genes normally associated with resting HBCs (e.g., Krt5 and Krt14; Figure S2), suggesting that minor perturbations in Trp63 expression are sufficient to elicit a change in cell state. Together, these observations are consistent with a model in which activated HBCs comprise a metastable state that allows for their transition toward a variety of cell fates. We posit that transitional HBCs represent a window along the developmental trajectory during which competing regulatory networks promote progression down one lineage versus another. What are the possible mechanisms underlying such a competition?

We propose a model in which the default state of HBC stem cells is to form sustentacular cells. Accordingly, a signal would be required to repress the default state and drive the HBCs to differentiate into GBCs and, subsequently, into neurons. Previous studies have established the role of Wnt signaling in GBC proliferation and neurogenesis during injury-induced regeneration in the olfactory epithelium (Chen et al., 2004; Wang et al., 2011). Here we demonstrate that Wnt signaling is both necessary and sufficient earlier in the lineage for HBC activation and specification of GBC neuronal progenitors under uninjured, steady-state conditions. The ability of Wnt signaling to activate quiescent HBCs to differentiate into proliferative neuronal progenitors is consistent with its role in stem cell activation and cell fate specification in other stem cell niches (Choi et al., 2013; Clevers et al., 2014). Interestingly, HBCs are enriched for NF-κB signaling components (Table S4), whereas sustentacular cells strongly express interleukin-33 (Il33), which is localized to the nucleus of sustentacular cells (Figure S5). In addition to its proposed role as an inflammatory cytokine, IL-33 has been shown to antagonize the transcription factor RelA/p65, a nuclear factor κB (NF-κB) effector (Ali et al., 2011). Future studies will be required to test the hypothesis that nuclear IL-33 promotes the sustentacular cell fate by antagonizing NF-κB signaling.

Multipotency of HBCs at the Population Level Reflects Individual Unipotent Cell Fate Decisions

How do multiple cell types arise from the population of olfactory stem cells? We found that individual HBCs mostly generate clones of cells of a single cell type, with approximately 80% consisting of only cells in the GBC lineage and 10% containing only sustentacular cells (Figure 4). These findings demonstrate a common thread with several other stem cell niches in which individual stem cells adopt singular cell fates that, in aggregate, underlie multipotency at the population level (Snippert et al., 2010).

Although the majority of individual HBCs appear to restrict their cell fate choices to a single lineage, about 10% of HBC-derived clones contain a single sustentacular cell amid a group of neurons. What can account for the apparent multipotency of individual HBCs in these cases? Perhaps GBCs occasionally give rise to sustentacular cells in addition to neurons and microvillous cells. However, we failed to detect any sustentacular cells among ~1,000 cells lineage-traced using the GBC-specific Ascl1-CreER driver under steady-state conditions, although it is possible that a rare GBC earlier in the lineage may occasionally
give rise to sustentacular cells. Alternatively, the occurrence of mixed neuronal/sustentacular cell clones in our analysis could reflect plasticity at the transitional HBC stage so that a given activated stem cell undergoes a self-renewing cell division, leaving its two daughter cells free to adopt either cell fate independently. This interpretation dovetails with the suggestion that transitional HBCs are metastable based on their variable expression of Trp63, which plays a critical role in maintaining HBCs in the resting, self-renewing state (Fletcher et al., 2011). It is also possible that the multipotent clones reflect symmetric self-renewing HBC mitoses prior to differentiation. Indeed, we observed elevated expression of cell cycle-associated genes in the occasional resting and transitional HBC (Figure 3), in agreement with our previous observation that a small percentage of resting HBCs express the proliferative marker protein Ki67 (Fletcher et al., 2011). Whatever the case, our observations are consistent with the idea that certain cell fate decisions may, in fact, remain reversible during a limited period early in the trajectory.

Direct Conversion of HBC Stem Cells into Sustentacular Cells

Our analysis also reveals direct conversion of quiescent HBCs to sustentacular support cells without cell division, an unusual mode of stem cell differentiation. In contrast, olfactory neurogenesis involves an expansion through proliferative GBC and INP intermediates. Thus, HBCs generate cells of the two diverging lineages using dramatically different strategies. Our analysis of gene expression at the single cell level further indicates that the developmental distance traversed in the sustentacular cell lineage is shorter than the distance covered in the generation of olfactory sensory neurons (Figure 3; Figure S3). In addition to expanding the number of cells in this lineage, proliferation of GBCs and INP1 cells may also activate transcriptional networks by inducing larger-scale, cell cycle-associated chromatin remodeling (Ma et al., 2015).

Direct reprogramming of cells to replace damaged or diseased cells in a tissue has enormous therapeutic potential. Unlike many other adult stem cells, HBCs are not actively dividing, a characteristic that allowed us to disentangle fate determination of HBC daughter cells from cell division. Moreover, the initiation of HBC differentiation into mature cell types is triggered not by overexpression of a factor but rather by removing one (Trp63). That removing factors would be an effective strategy for reprogramming is also suggested by the conversion of fibroblasts to cardiomyocyte-like cells by miRNA expression (Jayawardena et al., 2012) and pancreatic α cells to β-like cells by inhibiting Arx (Courtney et al., 2013). Our findings provide an alternative way to view cell fate transformation in vivo and strategies for inducing transdifferentiation of cells for therapeutic applications.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL DETAILS**
 - Transgenic Mice
- **METHOD DETAILS**
 - Fluorescence-Activated Cell Sorting (FACS)
 - Cell Capture and Single-Cell RNA Sequencing
 - Clonal Lineage Tracing
 - Histology
 - Genetic Mutant and Lineage Analysis
 - RT-qPCR
 - Wnt Pathway Visualization
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - Single-Cell RNA-Seq Alignment and Filtering
 - Normalization of Single-Cell RNA-Seq Data
 - Clustering of Single-Cell RNA-Seq Data
 - t-Distributed Stochastic Neighbor Embedding
 - Cell Lineages and Developmental Distance
 - Differential Expression and Gene Clustering
 - Gene Set Enrichment Analysis
 - Volcano Plots
 - Transcription Factor Co-Expression Networks
 - Odorant Receptor Expression Analysis
- **DATA AND SOFTWARE AVAILABILITY**
 - Accession Numbers
 - Software

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and six tables and can be found with this article online at http://dx.doi.org/10.1016/j.stem.2017.04.003.

AUTHOR CONTRIBUTIONS

R.B.F., L.G., Y.G.C., D.R., E.P., S.D., and J.N. designed the single-cell RNA-seq experiments. R.B.F., D.D., K.N.S., A.W., and M.B.C. analyzed the single-cell RNA-seq data. R.B.F., L.G., A.B., and Q.F. designed and performed all other experiments. N.Y., E.P., S.D., and D.R. supervised the statistical and computational analyses. R.B.F. and J.N. wrote the manuscript with input from the co-authors. J.N. oversaw all aspects of the study.

ACKNOWLEDGMENTS

We are grateful to Hector Nolla and Alma Valeros in the Cancer Research Laboratory Flow Cytometry Facility for their expertise and assistance with fluorescence-activated cell sorting; Shana McDevitt, Karen Lundy, Anett Schmittfull, and Mingyong Chung in the QB3 Genomics Sequencing and Functional Genomics Laboratories for their tireless efforts on RNA sequencing; Burke Bundy for his gracious assistance with cluster computing; and members of the Ngal laboratory for invaluable advice and suggestions over the course of this project. We also thank Makoto Taketo for providing the Ctnnb1loxex3 mouse. This work was supported by grants from the National Institute on Deafness and Other Communication Disorders (RO1DC007235), the National Institute of Mental Health (U01MH105979), the National Center for Research Resources (S10RR029668), and the Siebel Stem Cell Center. R.B.F. was supported by a grant from the National Institute on Aging (K01AG045334). D.D. and K.N.S. were supported by a training grant from the National Human Genome Research Institute (T32HG009047). L.G. was supported by a training grant from the National Institute of General Medical Sciences (T32GM098218) and Q.F. by a MARC National Research Service Award from the National Institute of General Medical Sciences (T34GM092702). R.B.F. and D.D. were also supported by training grant TG2-01164 from the California Institute of Regenerative Medicine CIRM Scholars program.

Received: November 16, 2016
Revised: March 2, 2017
Accepted: April 10, 2017
Published: May 11, 2017
REFERENCES

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenian Hamster: phycoerythrin (PE)-conjugated ICAM1</td>
<td>BD PharMingen</td>
<td>Catalog No. 565615</td>
</tr>
<tr>
<td>Rabbit: phycoerythrin (PE)-conjugated SCARB1</td>
<td>Novus Biologicals</td>
<td>Catalog No. NB400-104PE</td>
</tr>
<tr>
<td>Rabbit: F3</td>
<td>Bioss Antibodies</td>
<td>Catalog No. BS-4690R</td>
</tr>
<tr>
<td>Chicken: GFP/YFP</td>
<td>Abcam</td>
<td>Catalog No. ab13970</td>
</tr>
<tr>
<td>Goat: SOX2</td>
<td>Santa Cruz Biotechnology</td>
<td>Catalog No. SC17320</td>
</tr>
<tr>
<td>Donkey anti-Chicken: Alexa 488 conjugated secondary antibody</td>
<td>Jackson ImmunoResearch</td>
<td>Catalog No. 703-545-155</td>
</tr>
<tr>
<td>Goat anti-Chicken: Alexa 488 conjugated secondary antibody</td>
<td>Thermo Fisher Scientific</td>
<td>Catalog No. A-11039</td>
</tr>
<tr>
<td>Goat anti-Armenian Hamster: Dylight 594 conjugated secondary antibody</td>
<td>Jackson ImmunoResearch</td>
<td>Catalog No. 127-515-099</td>
</tr>
<tr>
<td>Mouse: P63 (4A4)</td>
<td>BioCare</td>
<td>Catalog No. CM163B</td>
</tr>
<tr>
<td>Goat: NEUROD1</td>
<td>Santa Cruz Biotechnology</td>
<td>Catalog No. SC1084</td>
</tr>
<tr>
<td>Mouse: NTUB/Tuj1</td>
<td>Neuromics</td>
<td>Catalog No. MO-15013</td>
</tr>
<tr>
<td>Rabbit: SOX9</td>
<td>Milipore</td>
<td>Catalog No. AB5535</td>
</tr>
<tr>
<td>Armenian Hamster: CD54/ICAM1</td>
<td>BD PharMingen</td>
<td>Catalog No. 550287</td>
</tr>
<tr>
<td>Alkaline phosphatase-conjugated anti-digoxygenin</td>
<td>Sigma</td>
<td>Catalog No. 11093274910</td>
</tr>
<tr>
<td>Alkaline phosphatase-conjugated anti-fluorescein</td>
<td>Sigma</td>
<td>Catalog No. 11426338910</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tamoxifen</td>
<td>Sigma</td>
<td>T5648</td>
</tr>
<tr>
<td>Neurobasal medium</td>
<td>Thermo Fisher Scientific</td>
<td>21103049</td>
</tr>
<tr>
<td>papain</td>
<td>Worthington Biochemical Corporation</td>
<td>LS003119</td>
</tr>
<tr>
<td>fetal bovine serum</td>
<td>Thermo Fisher Scientific</td>
<td>26140-087</td>
</tr>
<tr>
<td>propidium iodide</td>
<td>Sigma</td>
<td>81845</td>
</tr>
<tr>
<td>tissue freezing medium</td>
<td>Fisher</td>
<td>15-183-13</td>
</tr>
<tr>
<td>goat serum</td>
<td>Jackson ImmunoResearch</td>
<td>005000121</td>
</tr>
<tr>
<td>donkey serum</td>
<td>Jackson ImmunoResearch</td>
<td>017000121</td>
</tr>
<tr>
<td>Hoechst 33342</td>
<td>Thermo Fisher Scientific</td>
<td>H3570</td>
</tr>
<tr>
<td>DAPI in Vectashield</td>
<td>Vector Laboratories</td>
<td>H-1500</td>
</tr>
<tr>
<td>5-ethyl-2’-deoxyuridine (EdU)</td>
<td>Thermo Fisher Scientific</td>
<td>A10044</td>
</tr>
<tr>
<td>Dig RNA labeling mix</td>
<td>Roche (sold by Sigma)</td>
<td>1277073</td>
</tr>
<tr>
<td>RNA Labeling Mix, Fluorescein</td>
<td>Roche (sold by Sigma)</td>
<td>11685619910</td>
</tr>
<tr>
<td>BCIP/NBT color development substrate</td>
<td>Promega</td>
<td>s3771</td>
</tr>
<tr>
<td>SuperScript RTII reverse transcriptase</td>
<td>Invitrogen (now Thermo Fisher Scientific)</td>
<td>18080093</td>
</tr>
</tbody>
</table>

(Continued on next page)
REAGENT or RESOURCE SOURCE IDENTIFIER

<table>
<thead>
<tr>
<th>Reagent/Resource</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trizol</td>
<td>Invitrogen (now Thermo Fisher Scientific)</td>
<td>10296-010</td>
</tr>
<tr>
<td>DNase1</td>
<td>Roche</td>
<td>03539121103</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>Critical Commercial Assays</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 IFC for mRNA-seq (5-10 μM)</td>
<td>Fluidigm</td>
<td>1005759</td>
</tr>
<tr>
<td>C1 IFC for mRNA-seq (10-17 μM)</td>
<td>Fluidigm</td>
<td>1005760</td>
</tr>
<tr>
<td>C1 Single-Cell Auto Prep Kit for mRNA Seq</td>
<td>Fluidigm</td>
<td>100-6209</td>
</tr>
<tr>
<td>C1 Single-Cell Auto Prep Reagent Kit for mRNA Seq</td>
<td>Fluidigm</td>
<td>100-6201</td>
</tr>
<tr>
<td>SMARTer Ultra Low RNA Kit for the Fluidigm C1 System</td>
<td>Clontech</td>
<td>634833</td>
</tr>
<tr>
<td>Advantage 2 PCR Kit</td>
<td>Clontech</td>
<td>639207</td>
</tr>
<tr>
<td>Agilent High Sensitivity DNA Kit Reagents</td>
<td>Agilent</td>
<td>5067-4626</td>
</tr>
<tr>
<td>Nextera XT DNA Sample Preparation Kit</td>
<td>Illumina</td>
<td>FC-131-1096</td>
</tr>
<tr>
<td>Nextera XT DNA Sample Preparation Index Kits A-D</td>
<td>Illumina</td>
<td>FC-131-2001-4</td>
</tr>
<tr>
<td>Agencourt AMPure XP beads</td>
<td>Beckman Coulter</td>
<td>A63880</td>
</tr>
<tr>
<td>Qubit dsDNA High Sensitivity Assay Kit</td>
<td>Life Technologies Molecular Probes</td>
<td>Q32854</td>
</tr>
<tr>
<td>Tyramide Signal Amplification kit cy3</td>
<td>Perkin-Elmer</td>
<td>NEL744001KT</td>
</tr>
<tr>
<td>Tyramide Signal Amplification kit FITC</td>
<td>Perkin-Elmer</td>
<td>NEL741001KT</td>
</tr>
<tr>
<td>Click-IT EdU Imaging Kit, Alex Fluor 647</td>
<td>Thermo Fisher Scientific</td>
<td>C10340</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>Deposited Data</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data, normalized counts matrix</td>
<td>GEO</td>
<td>GEO: GSE95601</td>
</tr>
<tr>
<td>Scripts for analysis</td>
<td>GitHub</td>
<td>https://github.com/rufletch/p63-HBC-diff</td>
</tr>
</tbody>
</table>

Experimental Models: Organisms/Strains

<table>
<thead>
<tr>
<th>Organism/Strain</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mus musculus: CD-1</td>
<td>Charles River</td>
<td>Strain code 022</td>
</tr>
<tr>
<td>Mus musculus: C57BL/6</td>
<td>JAX mouse services</td>
<td>Stock no. 000664</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Krt5-CreER(T2)</td>
<td>Indra et al., 1999</td>
<td>N/A</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Ascl1-CreER(T2)</td>
<td>JAX mouse services; Kim et al., 2011</td>
<td>Stock no. 012882</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Trp63lox/lox</td>
<td>Mills et al., 2002</td>
<td>N/A</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Sox2lox2GFP</td>
<td>JAX mouse services; Arnold et al., 2011</td>
<td>Stock no. 017592</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Ctnnb1Ex3/-</td>
<td>Harada et al., 1999</td>
<td>N/A</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Ctnnb1lox/lox</td>
<td>JAX mouse services; Brault et al., 2001</td>
<td>Stock no. 004152</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Rosa26EYFP</td>
<td>JAX mouse services; Srinivas et al., 2001</td>
<td>Stock no. 006148</td>
</tr>
<tr>
<td>Mus musculus: B6.129-Rosa26Confetti</td>
<td>JAX mouse services; Snippert et al., 2010</td>
<td>Stock no. 013731</td>
</tr>
</tbody>
</table>

Oligonucleotides

See Table S6 for sequences.

Software and Algorithms

<table>
<thead>
<tr>
<th>Software/Algorithm</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cufflinks (Version 2.2.1)</td>
<td>Trapnell et al., 2010</td>
<td>cole-trapnell-lab.github.io/cufflinks/</td>
</tr>
<tr>
<td>Tophat2 (Version 2.1.1)</td>
<td>Kim et al., 2013</td>
<td>http://ccb.jhu.edu/software/tophat/</td>
</tr>
</tbody>
</table>
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John Ngai (jngai@berkeley.edu).

EXPERIMENTAL MODEL DETAILS

Transgenic Mice

Mice containing the following transgenes or modified alleles were used in this study: Krt5-CreER(T2) driver (Indra et al., 1999), Ascl1-CreER knock-in allele (Kim et al., 2011), Trp63lox/lox conditional knockout allele (Mills et al., 2002), Sox2eGFP knock-in reporter allele (Arnold et al., 2011), the conditional constitutively activated Ctnnb1loxex3/+ allele (Harada et al., 1999), Ctnnb1lox/lox conditional knockout allele (Brault et al., 2001), Rosa26eYFP reporter (Srinivas et al., 2001), and Rosa26Confetti reporter (Snippert et al., 2010).

All experiments were begun on animals at 3-4 weeks of age (P21-P28). We used both male and female mice in our studies; all mice were on a mixed C57BL/6 and 129 background and were assumed to be of normal immune status. Information about sex, age and genotype of animals used in RNA sequencing experiments is included as metadata in GEO: GSE95601. Animals were housed and maintained according to IACUC guidelines.

METHOD DETAILS

Fluorescence-Activated Cell Sorting (FACS)

We employed a two-pronged approach to label and isolate cells from the postnatal mouse olfactory epithelium. In one approach, the Krt5-CreER and the Rosa26eYFP transgenes were combined with either the wild-type Trp63 allele (Trp63+/+) or the conditional knockout of Trp63 (Trp63lox/lox). This approach allowed us to label HBCs and lineage-trace their descendants. We collected HBCs that were wild-type for Trp63 and the HBC lineage following tamoxifen-induced conditional ablation of Trp63 after 24 hr, 48 hr, 96 hr, 7 days, and 14 days. In the other approach, the Sox2eGFP transgenic was used. This transgene exhibits GFP expression in a pattern faithful to endogenous Sox2 expression in the OE (HBCs, GBCs, sustentacular and microvillous cells), but the GFP produces in the immediate neuronal precursors and immature neurons.

In the HBC lineage tracing experiments, Krt5-CreER; Rosa26eYFP/eYFP and Krt5-CreER; Trp63lox/lox; Rosa26eYFP/eYFP mice were injected once with tamoxifen (0.25 mg tamoxifen/g body weight) at P21-23 days of age and sacrificed at the specified times after injection (Figure 1). For each experimental time point, the olfactory epithelium was surgically removed, and the dorsal, sensory portion was dissected and dissociated. The dissociation protocol was similar to that used previously (Fletcher et al., 2011), except that papain dissociation was for 25 min, and tissue from each animal was processed individually in approximately one mL volume. First, approximately 30 units of papain was dissolved in 5 mL of Neurobasal medium with 1.5 mM cysteine and 1.5 mM ethylenediaminetetraacetic acid (EDTA) and incubated at 37°C for at least 30 min to activate the papain. Then, after dissection of the olfactory...
epithelium into Neurobasal medium, the tissue samples were added to an equal volume of the activated papain solution along with DNase I (100 units/mL) and allowed to incubate with gentle nutation for 25 min at 37°C. Following papain digestion and dissociation, the tissue was washed multiple times in phosphate buffered saline with 10% fetal bovine serum (PBS-FBS). Prior to loading on the cell sorter, cells were kept in PBS-FBS, and cells were sorted on a BD Influx sorter into PBS-FBS. A negative control (a littermate of the same genotype not injected with tamoxifen) was used to ensure proper gating. Propidium iodide was used to identify and select against dead or dying cells; only viable YFP+ cells were collected. The same dissection and dissociation protocol was followed to purify the Sox2eGFP transgene-labeled cells, except that HBCs were depleted using a phycoerythrin (PE)-conjugated ICAM1 antibody. Upon sequencing several replicates, we noticed that we were collecting many sustentacular cells and few cells of the neuronal lineage from Sox2eGFP animals. We therefore identified two cell surface proteins expressed in the sustentacular cells (SCARB1 and F3) and used immunolabeling with antibodies directed against these proteins to deplete the population of sustentacular cells.

In terms of representation, YFP lineage-traced cells contribute to clusters representing all predicted cell types. Sox2-eGFP cells populate all clusters except those predicted to comprise the earliest HBC stages, immature sustentacular cells and mature olfactory sensory neurons (Figure 2; Figure S2). These latter observations are consistent with the intentional depletion of HBCs by FACS, Sox2’s documented expression in proliferating neuronal progenitors and sustentacular cells (Guo et al., 2010), and the rarity of sustentacular cell differentiation from HBCs under normal conditions. The contribution of both YFP lineage-traced cells and Sox2-eGFP cells to clusters representing mature and differentiating cells in all identified lineages suggests that these clusters reflect bona fide cell types and not technical artifacts (e.g., batch effects) or other anomalies caused by the different genetic strategies used for cell isolation.

Cell Capture and Single-Cell RNA Sequencing
Labeled cells from the olfactory epithelium were subjected to single-cell RNA-seq. Each FACS collection was considered a biological replicate, and at least two biological replicates were collected for each experimental condition. The Fluidigm C1 system was used to capture single cells, lyse them, and produce cDNA (Wu et al., 2014). For each replicate, a litter of animals were given the same treatment, and each transgenic animal was dissected and processed individually prior to loading on the cell sorter. When possible, all cells were obtained from one animal, but if one animal did not provide the minimum number of cells necessary to load the C1 chip (approximately 2000 cells), then cells from additional animals were sorted into the collection tube. Cells from no more than three animals were pooled in any given FACS purification. Each C1 run was considered a single batch. Upon loading of the C1 chip, each capture site was visually inspected at 100× magnification for fluorescence, debris, and doublets or multiple cells. The following were excluded from future analysis: (1) any capture site scored as having two or more cells (doublets or multiplets), (2) any capture site that included additional debris, and (3) any capture site that did not have an apparently intact, fluorescent cell. The standard Fluidigm C1 Single-Cell Auto Prep System protocol for cell lysis, cDNA synthesis, and amplification was followed. This incorporates the Clontech SMART-Seq Ultra Low Input RNA reagents (Clontech SMARTer Kit designed for the C1 System) to produce and amplify cDNA. After processing on the C1 chip, 7 μL cell harvest buffer (Fluidigm) was added to each sample, resulting in an approximate final volume of 10 μL. For quality control purposes, any cell with less than 1.7 ng cDNA in 10 μL final volume (quantified using a Qubit fluorometer) was excluded. Illumina Nextera tagmentation-based sequencing library synthesis (Nextera XT DNA Sample Preparation Kit) was performed using Nextera v2 index oligos (Nextera XT DNA Sample Preparation Index Kit). Library size was selected using AMPure XP (Beckman Coulter) beads and confirmed using an Agilent Bioanalyzer. Indexed, single-cell libraries were sequenced on Illumina HiSeq 2500 sequencers to produce 50 nt single-end reads, except for two paired-end read runs (121 cells). Cells were sequenced in multiplex, with approximately 192 cells per lane for most runs. Prior to cell filtering, average sequencing depth was 1.36 million reads per cell (range 0.166 to 4.27 million).

Clonal Lineage Tracing
Krt5-CreER; Tp63lox/lox, Rosa26Confetti transgenic mice were used for clonal lineage tracing of the HBC lineage. A dose-response analysis was performed to determine an optimal dose of tamoxifen to achieve sparse labeling: 0.025 to 0.05 mg tamoxifen/g body weight administered by intraperitoneal injection. At this dose, at 14 days post tamoxifen administration there were only eight occurrences among 127 (6.3%) clones that expressed different reporters (e.g., mCFP and cYFP) with an edge-to-edge distance of 40 microns or less. Because the reporters localize to different compartments, we could distinguish close or overlapping clones expressing different reporters. We expect that the same percentage of clones were within 40 microns of a clone expressing the same reporter; therefore, we estimate that no more than 7% of our scored clones are contaminated by cells derived from multiple independent labeling events. The three animals with the largest and most comparable number of clones were examined for each clonal lineage tracing time point (7 and 14 days post tamoxifen injection, Figure S5). Tissue was fixed overnight (~16 hr), embedded in tissue freezing medium and frozen, and then sectioned on a cryostat at 40 micron thickness to allow sampling of the majority if not entirety of each clone. An antibody to GFP was used to visualize the membrane CFP (mCFP), cytosolic YFP (cYFP) and nuclear GFP (nGFP) reporters encoded by the Rosa26Confetti locus. Tissue was also labeled with an antibody to SOX2 to visualize the stem and progenitor cells, as well as the sustentacular and microvillous cells. We visualized SOX2 immunolabeling with an Alexa-568 conjugated secondary antibody (Invitrogen). We did not visualize the RFP reporter signal; there was no interference because the antigen retrieval necessary for optimal SOX2 visualization extinguished the RFP signal. We observed very few nGFP clones and could not judge cell morphology with its restricted localization; therefore, nGFP clones were excluded from our analysis. Identification of lineage-traced cell types was facilitated by cell morphology and position based on mCFP and cYFP expression. Olfactory sensory neurons were
identified by their medially located somata and bipolar morphology highlighted by a thin apical dendrite often terminating in a singular dendritic knob and the absence of SOX2 expression. Basal progenitors were identified by position and SOX2 expression. Microvillous cells were assigned based on the more apical position of their cell bodies, tapered, brush-like apical tufts and SOX2 expression. Sustentacular cells were identified by their apical localization, branched processes that span the epithelium, columnar apical shape, and SOX2 expression. Cells of the Bowman’s gland were identified by their organization into multicellular ducts and/or sub-mucosal acini, and absence of SOX2 expression. Any clone that contained an unidentifiable cell was excluded from the analysis (28/127 for 14 DPT, 11/80 for 7 DPT), although inclusion of all clones did not alter the overall conclusions. Confocal z stacks were obtained using a Zeiss LSM 710 or 780 confocal microscope, and images were processed and quantified using ImageJ (NIH). For a breakdown of clones by animal and reporter, see Figure S5.

Histology

Tissue was fixed at the indicated stages and time points with 4% paraformaldehyde for 16-18 hr at 4°C, washed with PBS, and decalcified in 10% ethylenediaminetetraacetic acid (EDTA) in PBS at 4°C for a minimum of 3-4 days, washed with distilled H2O, and equilibrated in 30% sucrose in PBS overnight at 4°C before mounting and freezing in tissue freezing medium (Fisher). Tissue was sectioned at 12-micron thickness on a cryostat. For immunohistochemistry, tissue sections were incubated with PBS containing 0.1% Triton X-100 with primary antibodies diluted in 10% goat or donkey serum overnight at 4°C followed by at least three 20 min washes in PBS with 0.1% Triton X-100. Detection was performed by incubating samples with Alexa 488, 555, 568, 594, or 647-conjugated secondary antibodies at room temperature for 2 hr, followed by nuclear counterstaining. We used primary antibodies to the following antigens: SOX2, GFP, P63, NEUROD1, NTUB1/TuJ1, SOX9, ICAM1, cleaved CASPASE3, SCARB1, and F3. Nuclei were counterstained with either Hoechst 33342 or DAPI, and/or tissue was visualized with brightfield illumination. Fluorescent confocal slices and z stacks were obtained using a Zeiss LSM 710 or 780 microscopes.

For RNA in situ hybridizations, tissue was fixed for a minimum of 24 hr at 4°C. Probes for RNA in situ hybridization were synthesized with either digoxygenin- or fluorescein-labeled UTP. Table S6 includes the oligonucleotides used for PCR amplification of templates for antisense RNA probes. The T7 primer sequence was on the 5-prime end of the reverse sequence oligonucleotide, and T7 RNA polymerase was used for in vitro transcription of probes. In brief, a standard RNA in situ hybridization protocol was used: slides were incubated in a prehybridization buffer for 2 hr. Probes were hybridized overnight at 65°C followed by multiple stringent washes in low salt buffer at 65°C. Subsequently, alkaline phosphatase-conjugated anti-digoxygenin or anti-fluorescin antibodies and BCIP/NBT substrates were used to visualize the hybridized probes. For fluorescence detection, the Perkin-Elmer Tyramide Signal Amplification (TSA) kit was used with additional washes following antibody incubation and fluorophore amplification; both FITC and Cy3 conjugated fluorophores were used. Confocal slices and z stacks of fluorescent labeling were obtained using a Zeiss LSM 710 or 780 microscopes. Brightfield images of colorimetric RNA in situ hybridization were obtained on a Nikon Microphot compound scope and Leica DFC500 camera. For RNA and protein expression profiles, a minimum of biological duplicates were analyzed.

Genetic Mutant and Lineage Analysis

To compare the effects of activating and inhibiting Wnt signaling via genetic manipulation of β-catenin/Ctnnb1, we assessed at least 2 mm of olfactory epithelium and a minimum of 100 per animal from a minimum of three animals per experimental condition and quantified different cell-types with the ImageJ cell counter plug-in. The number of animals (n) compared is included in the figure legend to Figure 6. Differences in the percentage of suprabasal, SOX2-negative lineage-traced cells between genotypes was compared with the two-tailed Welch’s t test assuming unequal variance between groups. For quantitation of the number of HBC lineage traced cells (YFP-positive) that were also positive for activated, cleaved CASPASE3 via immunohistochemistry, we did not employ randomization or blinding in our analyses. For quantification of the clonal lineage tracing experiment was performed as described in the main text, the figure legend to Figure 4 and Figure S5, and the methods section on clonal lineage tracing above. We excluded clones that had an undetermined cell type, leaving 99 clones across three animal replicates for the 14 DPT time-point and 69 clones across three animal replicates for the 7 DPT time-point as presented in Figure 4 and Figure S5. A breakdown of the number and types of clones scored by animal are included in Figure S5.

RT-qPCR

Olfactory epithelium was dissected and dissociated and cells were purified with fluorescence-activated cell sorting (FACS). RNA was extracted with Trizol according to the manufacturer’s (Invitrogen) instructions with an additional chloroform extraction and additional ethanol washes. cDNA was synthesized with SuperScript RTIII reverse transcriptase (Invitrogen) at 50°C. qPCR was performed on a BioRad CFX96 thermocycler. Three technical replicates were averaged, and then ΔΔCt values were calculated. Gene expression was normalized to Gapdh, and the log2 fold difference in gene expression between conditions is presented. Table S6 includes the oligos used for primers.
Wnt Pathway Visualization

PathVisio (Version 3.2.4, pathvisio.org; Kutmon et al., 2015) was used for pathway visualization. The Mm_Wnt_Signaling_Pathway_and_Puripotency_WP723_89312.gpml pathway from the WikiPathways Collection (Kutmon et al., 2016) was modified to only include genes that were included in our post-filtering dataset. Additionally, a few additional genes were added and removed to highlight the canonical aspect of Wnt signaling. Genes were colored by log2 fold-change values derived from one versus all differential expression (DE) (Table S1) performed using clusterExperiment, which uses limma. The modified pathway and the DE data are provided in our GitHub repository.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-Cell RNA-Seq Alignment and Filtering

Reads were aligned to the GRCh38.3 (mm10, patch release 3) mouse genome assembly with Tophat2 (Version 2.1.1; Kim et al., 2013), and low quality reads were removed with Trimomatic (Version 0.3.2; Bolger et al., 2014). We used RefSeq transcript annotations, which were modified to contain sequences of specific genes used in our analysis (e.g., CreER and eGFP), and we counted the number of reads aligning to every gene (defined as the union of all splice forms) with featureCounts (Version 1.5.0-p3; Liao et al., 2014). Reads that aligned to more than one gene as well as chimeric fragments were excluded. We also removed the 37 genes that failed to be quantified in at least one sample by Cufflinks (Trapnell et al., 2010).

We implemented a quality control (QC) pipeline that computes an extensive set of quality metrics, relying in part on FastQC (Version 0.3.2) and the Picard suite of alignment metrics (Version 2.5.0 with samtools 1.3.1). We used the open-source R package SCONE (https://github.com/YosefLab/scone; Version 0.0.7) to perform data-adaptive quality metric-based cell filtering. This yielded the following filtering criteria: any cell with fewer than 100,000 aligned reads or a percentage of aligned reads below 88.9% was filtered out. We identified cells that were non-sensory contaminants by expression of Reg3g (Figure S1) and doublets by co-expression of known neuronal (Omp) and sustentacular cell markers (Cyp1a2 or Cyp2g1). After filtering low quality cells (76) and removing doublets (9) and non-sensory epithelial contaminants (78), 687 cells (out of 849) remained. Finally, we retained only those genes having at least 40 reads in at least 5 cells (12,781 genes).

Normalization of Single-Cell RNA-Seq Data

We performed and assessed several normalization schemes using SCONE, based on a set of 9 data-driven performance metrics. These metrics aim to capture two main features of each normalization procedure: the ability to remove unwanted technical variation and the ability to preserve wanted biological variation of interest. The first group of performance metrics includes the correlation of expression measures with factors derived from validated markers of various OE cell types (positive control genes) and the average silhouette width (Rousseeuw, 1987) of the obtained clusters (cluster quality). Metrics in the second group include the correlation of expression measures with factors derived from “housekeeping” negative control genes (obtained from our earlier microarray experiments analyzing injury-induced regeneration of the olfactory epithelium) and the correlation between expression measures and quality control (QC) measures. See the scone package vignettes (available at https://github.com/YosefLab/scone) for more details. According to SCONE, the best performing normalization was full-quantile normalization (Boistad et al., 2003; Bullard et al., 2010), followed by regression-based adjustment for QC measures (see above). Specifically, principal component analysis (PCA) was applied to the matrix of QC measures, and the first PC was used as a quantitative factor of “unwanted” technical variation across cells. Then, the log-transformed quantile-normalized expression measures (adding a pseudocount of 1 prior to the log transformation) for each gene were modeled as a linear function of this technical covariate. The normalized expression measures were defined as the residuals from the linear model fit, rescaled to have the same mean as the log-transformed quantile-normalized read counts.

Clustering of Single-Cell RNA-Seq Data

We used the clustering framework RSEC (Resampling-based Sequential Ensemble Clustering) to obtain stable and tight cell clusters. The method is implemented in the open-source clusterExperiment R package (Version 0.99.3-9001) available at Bioconductor Project (http://bioconductor.org/packages/clusterExperiment). Briefly, RSEC comprises the following steps. Given a base clustering algorithm, which we chose to be k-means, where the parameter k determines the number of clusters (Hartigan and Wong, 1979), RSEC creates ensemble clusters by the following steps: 1) repeatedly subsampling the observations (cells or genes, respectively), 2) clustering each set of subsampled observations with k-means, and then 3) forming a final clustering determined by clustering samples based on the percentage of subsamples for which two observations were assigned to the same cluster. This procedure was repeated for increasing k (the number of clusters), in order to find the cluster that changed the least; this cluster was deemed the most stable and removed, and then the entire clustering procedure was repeated on the remaining data. This sequential strategy follows that of Tseng and Wong (2005) and ensures that outlying clusters do not dominate the clustering; it also alleviates the dependence on the number of clusters k in lieu of other parameters that define required cluster similarity and stability. RSEC generates a large collection of such cluster sets by repeating the above procedure for different choices of the parameters defining similarity and stability; it then identifies a consensus over the different candidate sets based on the co-clustering of observations. This approach tends to result in a large number of small clusters that sometimes do not differ substantially in terms of gene expression. Hence, the last step of RSEC is to merge closely related clusters that do not exhibit differential expression. The vignette of the
clusterExperiment package provides additional details on the RSEC algorithm (available at https://www.bioconductor.org/packages/clusterExperiment).

When applied to the first 50 principal components of the expression matrix RSEC found 18 stable clusters, which were then manually inspected for the presence of marker genes of known cell types in order to make preliminary assignments of cell type identities. Clusters containing fewer than 10 cells (each representing < 1.5% of the total population studied) were deemed to be less reliable and therefore set aside to avoid confounding downstream analyses, yielding a final repertoire of 13 clusters (Figures S1 and S2).

Preliminary assignment of cluster identities were made as follows. The resting HBC cluster was annotated based on expression of HBC markers Trp63, Krt5, and Krt14 (Fletcher et al., 2011; Holbrook et al., 1995; Suzuki and Takeda, 1991). Interestingly, two clusters (ΔHBC1, ΔHBC2) contain cells in which the canonical HBC stem cell markers Trp63, Krt5, and Krt14 appear to be variably downregulated from cell to cell (Figure S2), suggesting the existence of at least one transition state in which HBCs first begin to differentiate. Cells in the GBC cluster express Kit, Ascl1, and high levels of cell cycle genes, markers of GBC progenitors (Goldstein et al., 2015; Mangiapus et al., 2004). Clusters representing immediate neuronal precursors (INP1-3) and immature olfactory sensory neurons within the olfactory neuronal lineage were also identified based on the expression of genes such as Neurod1, Lhx2, Gap43, and the G protein subunit Gγ8 (Gng8) (Hirotta and Mombaerts, 2004; Kolterud et al., 2004; Packard et al., 2011; Tirindelli and Ryba, 1996; Verhaagen et al., 1989). The mature olfactory sensory neuron cluster (mOSN) was identified by expression of olfactory marker protein (Omp), the main subunit of the cyclic nucleotide-gated channel (Cnga2) and Gγ13 (Gng13), hallmarks of mature olfactory sensory neurons (Huang et al., 1999; Keller and Margolis, 1975; Sautter et al., 1998). Cells in two clusters (immature and mature sustentacular cells, iSu and mSu), respectively express increasing levels of Cyp2g1, a marker of sustentacular cells (Gu et al., 1998). We also identified a cluster of microvillous cells (MV2) based on their expression of Ascl3 and Cftr (Pfister et al., 2015). The identity of one small cluster of cells could not be readily classified due to the heterogeneous expression of a few identifying marker genes. Based on the expression of Trpm5, a marker of a subset of microvillous cells (Hansen and Finger, 2008), and Sox9, which we validated as being expressed not only in cells of the Bowman’s gland but also in a subset of microvillous cells (Figure S2), we provisionally assigned this cluster’s identity as microvillous cells (MV1), although we cannot exclude the possibility that it contains precursors of Bowman’s gland. Thus, clustering of our single-cell RNA-seq data successfully identified three of the major mature HBC-derived cell types in the olfactory epithelium (olfactory sensory neurons, sustentacular cells, microvillous cells) as well as intermediate progenitors and putative transition state stem cells. The absence of cells of the Bowman’s gland may reflect their low representation in the overall population and/or their lower survival in our cell isolation procedure.

t-Distributed Stochastic Neighbor Embedding

To display the relative distances between cells in a lower-dimensional representation of gene expression space, we employed t-distributed stochastic neighbor embedding (t-SNE; van der Maaten, 2014; van der Maaten and Hinton, 2008). t-SNE is a method of dimensionality reduction that excels at representing distances on multiple scales. We use it here to visualize our data independently from how we generated the cell clusters (for clustering, see RSEC above). We use the Barnes-Hut implementation, as available in the Rtsne R package. We chose as input expression data corresponding to the 500 most variable genes, and we set perplexity to 10 with 1000 iterations; varying the perplexity to 30 or 50 and increasing iterations does not alter our conclusions about the congruence between the t-SNE visualization and our clustering results (data not shown). Cell Lineages and Developmental Distance

We used a recently developed cell lineage inference algorithm, Slingshot (Version 0.0.0.9005, available as an open-source R package slingshot at https://github.com/kstreet13/slingshot), to identify lineage trajectories and bifurcations and to order cells along trajectories. Slingshot takes as input a matrix of reduced dimension normalized expression measures (e.g., PCA) and cell clustering assignments. It infers lineage trajectories and branch points by connecting the cluster medoids using a minimum spanning tree (MST) and identifying the starting cluster or root node. Lineages are defined by ordered sets of clusters beginning with the root node and terminating in the most distal cluster(s) with only one connection. Next, principal curves (Hastie and Stuetzle, 1989) are fit to the subsets of cells making up each lineage, providing a smooth, nonlinear summary of each trajectory. Individual cells are then orthogonally projected to each curve and thereby ordered in a space reflecting developmental distance. The ordering provided by Slingshot, analogous to pseudotime, is referred to herein as developmental order.

Any cluster with fewer than 10 cells was removed prior to applying Slingshot. The cluster representing resting HBCs was chosen as the root node. In addition to assignment of the starting point, slingshot allows for the user to specify known end points of the developmental lineage to better guide its identification. Using this feature, we assigned mature sustentacular cells as an endpoint. Note that this assignment only constrains that cluster; all other clusters are allowed to be placed anywhere on a lineage, and additional endpoints can be found beyond this one, as was the case in our data. slingshot then generated principal curves and cell developmental distances for each lineage. slingshot was applied to the first five principal components of the normalized expression matrix. Five components were chosen based on examining the separation of cells along individual PCs (Figure S2E), although the MST was stable beyond the first 10 PCs (data not shown).

Differential Expression and Gene Clustering

We used limma for differential expression (DE) analysis between clusters within each lineage, applying a one-versus-all approach (i.e., comparing the average of one cluster to the average of all the other clusters in that lineage, Table S1). For each lineage, genes
being among the top 500 DE genes (lowest adjusted p value) for each one-versus-all comparison were retained for clustering. The expression profiles of these genes were centered and scaled (subtracting the mean and dividing by the standard deviation across all cells in a given lineage) and then clustered using clusterExperiment. Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1987) was used as base algorithm for a range of numbers of clusters k, and a consensus clustering was identified for each lineage. Expression profiles for the 40 cell cycle genes were also centered and scaled as described above, but across cells from both lineages.

Gene Set Enrichment Analysis

After clustering the cells, we used limma (Version 3.28.19; Smyth, 2004) for DE analysis as implemented in the clusterExperiment package. We applied limma’s implementation of the romer rotation test to perform gene set enrichment analysis (GSEA) (Ritchie et al., 2015) with 10^7 rotations contrasting each cluster. Gene sets were taken from the Molecular Signatures Database (MSigDB) at the Broad Institute and included all Hallmark gene sets (H) in addition to the Canonical pathways, KEGG, and Reactome gene sets from the curated (C2) gene sets.

Volcano Plots

We used clusterExperiment’s wrapper around limma for DE analysis across all lineages applying a pairwise approach (i.e., comparing the average of one cluster to the average of each other cluster, Table S2). We plotted the –log10 adjusted p value (Benjamini-Hochberg correction) versus log2 fold-change in expression for each pairwise comparison corresponding to a transition predicted by Slingshot. Volcano plots highlight genes that are downregulated or upregulated with a fold-change greater than two (log2 > 1) and an adjusted p value less than 0.01.

Transcription Factor Co-Expression Networks

Transcription factor network diagrams were based upon transcription factor genes that were among the 500 most differentially expressed genes within each lineage, using the previously mentioned one-versus-all approach (Table S3). A list of transcription factors was obtained from the Animal Transcription Factor Database and can be found at https://github.com/rufletch/p63-HBC-diff. Only transcription factors that had a correlation of at least 0.3 with at least 5 other differentially expressed transcription factors along the lineage were included in the correlation network. This correlation threshold was chosen to be greater than the maximum pairwise correlation after random permutation, as previously done in Treutlein et al. (2016).

Odorant Receptor Expression Analysis

Since odorant receptors (ORs) are typically expressed at one allele per mature olfactory sensory neuron, we chose to investigate transcripts per million (TPM) output from RSEM (Version 1.2.31; Li and Dewey, 2011) to assess OR expression in the neuronal lineage instead of filtered counts because most olfactory receptors would have been filtered out. For this analysis, we aligned reads to the transcriptome with Bowtie2 (Version 2.2.9; Langmead and Salzberg, 2012) and quantified gene expression with RSEM, while setting the alignment parameters to the ones recommended by RSEM’s authors. Analysis of OR expression using Kallisto (Bray et al., 2016) TPMs gave similar results (data not shown).

DATA AND SOFTWARE AVAILABILITY

Accession Numbers

The accession number for the RNA-seq data reported in this paper is GEO: GSE95601.

Software

Analysis scripts for this dataset can be found at https://github.com/rufletch/p63-HBC-diff. The R software packages scone, clusterExperiment, and slingshot are available on GitHub and Bioconductor as described above.
Supplemental Information

Deconstructing Olfactory Stem Cell

Trajectories at Single-Cell Resolution

Russell B. Fletcher, Diya Das, Levi Gadye, Kelly N. Street, Ariane Baudhuin, Allon Wagner, Michael B. Cole, Quetzal Flores, Yoon Gi Choi, Nir Yosef, Elizabeth Purdom, Sandrine Dudoit, Davide Risso, and John Ngai
Figure S1. Related to Figure 1
(A) Sox2eGFP co-labels with neuronal tubulin (NT); overexposure reveals expression in the sub-mucosal axon fascicles (arrows). (B,C) Both Scarb1 and F3 RNA (B) and protein (C) localize to sustentacular cells. (D) RT-qPCR of FACS-purified Sox2-eGFP-positive cells demonstrates that cell depletion with SCARB1 or F3 antibodies enriches for neural progenitors (Hes6, Rbm24, and the cell cycle gene Top2a) and microvillous cells (Ascl3) (n=1 for each; table with oligonucleotide sequences in Table S6). (E) Reg3g is expressed in the non-sensory regions of the epithelium, with no detectable expression in the Krt5-CreER; Trp63lox/loxp; Rosa26eYFP lineage-traced tissue at any stage examined (96 hours post tamoxifen (HPT), 14 days post tamoxifen (DPT) or 48HPT (not shown)); solid lines mark the boundary between sensory and non-sensory epithelium. Dashed lines mark the boundary between the epithelium and submucosa; scale bar = 50 microns. (F) All HBCs express P63, Icam1, and Sox2: immunohistochemistry for the Sox2eGFP transgene, P63, and ICAM1 shows co-labeling. Scale bars, 50 microns.
Figure S2. Related to Figure 2

(A) The heatmap shows expression of selected marker genes (rows) in cells (columns) organized by cluster (indicated by colored coded bars across the top, as in Figure S1). Experimental condition and batch are indicated by the middle and bottom color bars. Experimental condition colors correspond to the time-points indicated in panel (D). (B) At 24 hours post tamoxifen (hpt), some HBCs still express Trp63 (P63) while others no longer express detectable levels (arrow). By 48hpt, Trp63 is no longer detectable by immunohistochemistry. There is asynchrony in the differentiation of HBCs upon conditional knockout (cKO) of Trp63, as the three examples demonstrate. (C) Ascl3, Coch, Cftr, Cd24a, Hepacam2 label one type of microvillous cell. We also observe that Sox9 is expressed in a different class of microvillous cells (arrow) in addition to the Bowman’s gland (arrowheads). Trpm5 is also expressed in this MV cell sub-type (arrow). (D) Differentiation is asynchronous, as evidenced by the partial overlap of experimental condition and cell cluster identity. In the top plot, the percentage of cells from each experimental condition that contribute to each cluster is indicated by the size of the circle. Note that most experimental conditions contribute to multiple clusters, while the Trp63+/+ HBCs predominantly populate the resting HBC cluster. In the bottom plot, the size of the circles reflects the proportion of cells from each cluster derived from each experimental condition. These plots reveal that clusters defined by more differentiated cell types are populated by cells with later experimental time points. HBCs from Trp63 wild type animals constitute most of the resting HBCs. Sox2eGFP-positive cells comprise mostly mature sustentacular cells and neuronal precursors. Persistence of GFP expression late in the neuronal lineage is due to perdurance of GFP following its initial expression in GBCs. (E) The first five principal components of the expression matrix of all detected genes effectively separate the clusters and serve as input for Slingshot. (F) Expression of Trp63, Krt5, and Krt14, established markers of resting HBCs (green), in the neuronal lineage and organized by developmental order. (G) Pairwise comparisons of Trp63, Krt5, and Krt14 gene expression in the resting (green) and transitional HBCs (ΔHBC1, gold; ΔHBC2, light blue). All three are highly correlated in resting HBCs, but their expression is no longer tightly coordinated in the transition states.
Figure S3. Related to Figure 3
(A) Expression (log2 normalized counts) of all 2327 differentially expressed genes used in the gene clustering for the neuronal lineage, ordered by gene cluster (vertical axis) and neuronal lineage developmental order (horizontal axis). (B) Expression of all 1622 differentially expressed genes used in the gene clustering for the sustentacular cell lineage, ordered by gene cluster (vertical axis) and sustentacular cell lineage developmental order (horizontal axis). (C) Expression of the genes used in the sustentacular cell lineage gene clustering, as they are expressed in the neuronal lineage. (D) Expression of the genes used in the neuronal lineage gene clustering, as they are expressed in the sustentacular cell lineage. Note that the heatmap shows genes that are enriched in both resting and transitional HBCs as well as immature and mature sustentacular cells, highlighting the similarity of sustentacular cells and their HBC precursors. (E, F) Expression of the cell cycle genes used in the cell cycle gene set heatmap in Figure 3, in the neuronal (E) and sustentacular cell lineages (F). (G) Volcano plots of –log10 adjusted p-value (adj. p-value) versus log2 fold change (log2FC) between clusters. The plots are arranged to represent the lineage trajectory map and display the number of differentially expressed genes between the clusters at each transition in the lineage (genes with adj. p-value < 0.01 and log2FC > 1 are shown in black). Up-regulated genes are shown in red text and down-regulated in blue. Limma was used for differential expression, and the p-values were adjusted for multiplicity using the Benjamini-Hochberg procedure (see Star Methods). See Table S2.
Figure S4. Related to Figure 3

(A) Double fluorescent RNA in situ hybridizations for the indicated genes in each panel. The plots are best-fit curves to the single-cell RNA-seq data from cells in the neuronal lineage, sorted by their developmental order in the lineage. Cells labeled with both probes appear white in these pseudo-colored images. The expression patterns of these selected genes demonstrate the progression of cells through multiple immediate neuronal precursor stages that were inferred by our single-cell RNA-seq analysis. (B) Colorimetric RNA in situ hybridizations for known and novel genes of the different olfactory cell types. We identified and validated many novel genes along the neuronal lineage (Ezh2, Hmgb2, Hmga1, Tead2, Elavl4, Sgc2, Baz1a, Cdl2, Tex15, Crabp1, Arghdig, Elf3, Nrn1l) and sustentacular cell lineage (Pon1, Sec14l3, Elf5, Ill33). Scale bars = 50 microns. (C) Expression of odorant receptors (ORs) in the neuronal lineage, sorted by their developmental order in the lineage. The top panel reveals significant up-regulation of OR expression in mature olfactory sensory neurons (mOSN; orange). The second and third panels show the number of OR genes expressed per cell at different thresholds of expression. Multiple ORs are detected at the INP3 stage (purple); as cells mature, the pattern shifts to high level expression of one OR per cell, starting in the immature olfactory sensory neuron (iOSN) stage (yellow). (D) The remaining panels display selected transcription factors, chromatin modifiers and other signaling molecules relevant to OR gene expression.
Figure S5. Related to Figure 4

(A-D) Krt5-CreER; Trp63lox/lox; Rosa26Confetti clonal lineage tracing analysis at 7-days post tamoxifen (DPT) induction. A summary of the types of clones obtained is presented in (A). Neuron-containing clones usually contain more than one neuron (mean = 8.8 +/- 1.0 standard error of the mean), whereas sustentacular cells (C) and microvillous cells (D) are almost always limited to one cell of that type per clone (1.2 +/- 0.1 and 1.2 +/- 0.2, respectively). Note that the GBC category in (A) represents all GBC-containing clones that had any type of cell from the neuronal lineage, such as a neuron or microvillous cell. (E-H) Plots relating to the 14DPT (E, F) or 7DPT (G, H) clonal lineage tracing. (E, G) The number of clones of each type from each animal in the analysis. (F, H) The proportion of clones that were labeled by membrane CFP or cytosolic YFP for each animal. These data demonstrate the consistency of our observations across multiple animals; no single animal skewed the results. G = GBC; GMV = GBC, microvillous cell; GN = GBC, neuron; MV = microvillous cell; N = neuron; NBG = neuron, Bowman’s gland; NMV = neuron, microvillous cell; NS = neuron, sustentacular cell; S = sustentacular cell; BNMV = Bowman’s gland, neuron, microvillous cell; GI = GBC, neural precursor; GIN = GBC, neural precursor, neuron; GMVS = GBC, microvillous cell, sustentacular cell; GS = GBC, sustentacular cell; HN = HBC, neuron. (I) Immunohistochemistry for YFP and IL33 in a Krt5-CreER; Trp63lox/lox; Rosa26Confetti clone demonstrates co-labeling of a sustentacular cell with nuclear IL33 (arrow), consistent with our classification. Scale bar, 25 microns. (J) Table of the quantification of the immunohistochemistry of the Krt5-CreER; Trp63lox/lox; Rosa26eYFP samples presented in the main Figure 4. The table displays the animals/samples at each time-point (24-hours, 48-hours, 96-hours, and 7-days) post tamoxifen injection, the length of OE counted in microns, the number of YFP+ lineage traced cells, the number of activated CASPASE3+ cells, and the number of co-labeled cells in each sample. (K) This micrograph shows a rare Bowman’s gland labeled by Ascl1-CreER; Rosa26eYFP lineage tracing at 21 DPT. Scale bar, 50 microns.
Figure S6. Related to Figure 5
(A, B) Correlation heatmap of the most highly differentially expressed (DE) transcription factors of the neuronal (A) and sustentacular cell (B) lineages. (C) Gene Set Enrichment Analysis (GSEA) for the resting HBC cluster, sorted by the –log10 p-value; the top 100 gene sets are displayed. The Wnt signaling pathway and the P63 (Trp63) pathway are highlighted in magenta. See also Table S4. (D) Gene expression plots for the secreted Wnt signaling antagonists (Sfrp1, Dkk3) and key transcription factors involved in Wnt signaling (Tcf7l2, Sp8). (E) Consistent with our contention that HBCs form more sustentacular support cells relative to neurons in the p63lox/lox, Beta-cateninlox/lox double knockout, many of the HBC derived cells in the middle and apical regions of the epithelium express IL33, a gene we validated as being expressed in sustentacular cells and Bowman’s gland, and not neurons (see Figure S4).